ZELD-e aims to reconfigure and update the existing monitoring and control schema of the welding processes involved in tab-to-tab (T2T) and tab-to-busbar (T2B) joining of battery packs (BP) used in EVs, in order to increase the joint quality, reduce and even eliminate defective parts, optimize equipment’s productivity, energy consumption and minimize development time and time-to-market. The proposed solution/system is based upon a multilevel approach, including the enhancement of the sensorial configurations, the data acquisition (DAQ), and control functionalities located at the edge (shop floor), backed up by a centralized web-based platform with visualization, Quality Assessment (QA) and data processing/analysis capabilities paired with a long-term control optimization schema.